A triangulo-Triplatinum Cluster with no Bridging Atom: The Structure of $[Pt_3(2,6-Me_2C_6H_3NC)_2(\mu-Ph_2PCH_2PPh_2)_3]^{2+}$

Arleen M. Bradford, Nicholas C. Payne, * Richard J. Puddephatt, * Dong-Sheng Yang and Todd B. Marder^b

Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7
Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

The complex cation $[Pt_3(2,6-Me_2C_6H_3NC)_2(\mu-dppm)_3]^{2+}$, dppm = $Ph_2PCH_2PPh_2$, characterized by X-ray structure analysis, is the first triplatinum cluster which contains no single-atom bridging ligand; it completes a series of clusters based on the equatorial $[Pt_3(\mu-dppm)_3$ unit in which two axial ligands, L, are present and in which structures with $Pt_3(\mu_3-L)_2$, $Pt_3(\mu_3-L)(L)$ and $Pt_3(L)_2$ units are very close in energy.

All reported *triangulo*-triplatinum cluster complexes possess one or more one-atom bridging ligand.¹ These bridging ligands may be equatorial μ_2 -ligands {*e.g.* [Pt₃(μ -CO)₃(PR₃)₃], [Pt₃(μ -SO₂)₂(PR₃)₃(CNR)₂], [Pt₃(μ -CNR)₃-(CNR)₃] and related compounds}^{1,2} or axial μ_3 -ligands {*e.g.* [Pt₃(μ_3 -CO)(μ -dppm)₃]²⁺, dppm = Ph₂PCH₂PPh₂}³ or μ_2 ligands {*e.g.* [Pt₃(μ -CO)(μ -dppm)₄]²⁺, dmpm = Me₂PCH₂PMe₂},⁴ and the need for such bridging ligands has been rationalized by EHMO calculations.⁵ The cluster electron count in the above compounds can vary from 42–46 electrons.¹⁻⁵ Triplatinum clusters with the 44 electron count and no one-atom bridge are known but they have an open linear or A-frame structure in the complexes Pt₃(XyNC)₆(PPh₃)₂]²⁺, Xy = 2,6-Me₂C₆H₃, 1,^{6,7} or [Pt₃(XyNC)₄(μ -dppm)₂]²⁺, **2**,⁷ respectively. This paper reports a new 44 electron Pt_3 cluster, which is the first *triangulo*- Pt_3 cluster with no one-atom bridging group and whose structure poses an interesting theoretical puzzle. The new chemistry is shown in Scheme 1,† R = Xy, and the

[†] New complexes were characterized by elemental analysis and multinuclear NMR studies. The structure of 4, R = cyclohexyl, as 4 (PF₆)₂ was determined crystallographically and, in agreement with the spectroscopic data, indicates the presence of a semi-bridging CO; however, partial disorder involving the CO and RNC ligands precluded detailed determination of their geometries. The identity of 2, as 2 (PF₆)₂, was also confirmed crystallographically in agreement with ref. 7. Complex 4, R = Xy, gives v (CO) = 1793 cm⁻¹, v (C=N) = 2165 cm⁻¹, ¹J(Pt¹CO) = 1200 Hz, ¹J(Pt²CO) = 400 Hz, indicating a semi-bridging CO is present.

structure of $[Pt_3(CNXy)_2(\mu\text{-dppm})_3][PF_6]_2$, 5, is shown in Fig. 1.‡

The striking features of the structure of **5** are as follows: (i), Both isocyanide ligands are bound in a terminal fashion to Pt(1) with Pt(1)-C(9) = 1.93(2) Å and Pt(1)-C(19) = 1.97(2) Å. Distances of C(9) and C(19) from Pt(2) and Pt(3) range from 2.84(2)-3.26(2) Å, clearly too long for a significant bonding interaction. The v(C=N) value of 2122 cm⁻¹ in the solid or in solution also confirms the presence of only terminal XyNC ligands. (ii), The distances Pt(1)-Pt(2) = 2.653(1), Pt(1)-Pt(3) = 2.647(1), Pt(2)-Pt(3) = 2.582(1) Å are all typical of Pt-Pt single bonds.¹⁻⁷

Thus, addition of two RNC ligands to 3 [mean Pt-Pt 2.634(1) Å] has resulted in a lengthening of bonds to Pt(1) (9 and 13 σ) and a significant shortening of Pt(2)-Pt(3) by 38 σ . There is, therefore, no evidence for opening of Pt-Pt bonds to give a complex analogous to 1 or 2 and related compounds.⁶⁻⁸§

Thus, complex 5 is the first *triangulo*-triplatinum complex without a single-atom bridging ligand, and the first triplatinum cluster to contain an approximately octahedral platinum centre.¹ Why do the isocyanide ligands not bridge? At this stage, we have no simple answer. EHMO calculations¶ on the model compound $[Pt_3(CNH)_2(\mu-H_2PCH_2PH_2)_3]^{2+}$ suggest that the structure with two μ_3 -HNC ligands should be more stable than structure 5 (Fig. 2), but indicate that the HOMO is B_1 , in the bridged structure but A_1 in the terminal structure and that the HOMO-LUMO gap is greatest for an intermediate structure (Fig. 2). Presumably, a trade-off between these factors determines the ground-state geometry. Nevertheless, experimental results show very clearly that the isocyanide ligands are terminal and it is relevant to note that 5 is isolobal to the complex $[Pt_2(CO){P(OPh)_3}_3Fe(CO)_4]$, in which the formally d⁸ octahedral fragment $[PtL_2(XyNC)_2]^{2+}$ in 5 is replaced by the d^{8} [Fe(CO)₄] fragment.⁹ The structure of 5 completes the series containing $Pt_3(\mu_3-L)_2$, $L = SnF_3(\mu_3-L)_2$ L)L]²⁺, \hat{L} = CO; [Pt₃ L_2]²⁺, L = XyNC, **5**. The fluxionality of such complexes, including 4 and 5, shows that interconversion between these structural types is facile and mimics the mobility of ligands on a Pt(111) surface. The fluxionality of 4 and 5 is most easily observed by their ³¹P NMR spectra, each

¶ Molecular orbital calculations of the extended Hückel type: R. Hoffmann, J. Chem. Phys., 1963, **39**, 1397; R. Hoffmann and W. N. Lipscomb, J. Chem. Phys., 1962, **36**, 2179; J. Chem. Phys., 1962, **37**, 2872; all calculations were carried out using ICONS, with fragment MO analysis: A. Rossi, J. Howell, D. Wallace, K. Haraki and R. Hoffmann. Program ICON8, QCPE No. 517, 1986, **6**, 100. Hückel constant = 1.75, and Weighted H_{ij} (modified Helmholz-Wolfsberg formula) were used throughout: J. H. Ammeter, H.-B. Burgi, J. C. Thibeault and R. Hoffmann, J. Am. Chem. Soc., 1978, **100**, 3686. Parameters for the calculations were taken from R. H. Summerville and R. Hoffmann, J. Am. Chem. Soc., 1976, **98**, 7240. The shorter Pt-C bond was maintained at 2.02 Å as the angle $\theta = \angle C - Pt^1 - C$ varied from 80° to 180°, and the HNC ligands were kept linear and perpendicular to the Pt₃ plane.

Fig. 1 A view of the structure of 5. Selected parameters are: Pt(1)-C(9) = 1.93(2), Pt(1)-C(19) = 1.97(2) Å, $C(9)-Pt(1)-C(19) = 150(1)^{\circ}$

[‡] Crystal data for 5: C₉₃H₈₄F₁₂N₂P₈Pt₃·C₃H₆O; $M_r = 2348.8$, monoclinic, space group P2₁ (No. 4), a = 17.639(2), b = 19.704(3), c = 14.544(1) Å, $\beta = 101.99(1)^\circ$, U = 4945(2) Å³, Z = 2, Mo-Kα radiation, $\lambda = 0.71073$ Å, 8531 unique data, full-matrix least-squares refinement, phenyl rings refined as rigid groups, $R_1 = 0.0713$, $R_2 = 0.0783$. Atomic coordinates, bond lengths and bond angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

[§] Although distances for bridged metal-metal bonds can be deceptive, the μ -dppm ligands present in 5 do not constrain the Pt atoms to remain in bonding distance (see 2 for example) and so the conclusion that Pt-Pt bonding is not weakened in 5 relative to 3 is justified.

Fig. 2 The calculated total energy and energies of the HOMOs and LUMO of $[Pt_3(C=NH)_2(\mu-H_2PCH_2PH_2)_3]^{2+}$ as a function of the angle C-Pt1-C. The symmetry labels refer to $C_{2\nu}$ point group. The orbital B₁ has $p_z d_\pi$ character at the Pt centres and has PtC σ^* character in the bridged structure, whereas A₁ has $p_o d_\sigma$ character at the Pt centres and has Pt¹-C σ^* character in the terminal structure

of which shows three resonance signals at low temperature but only a broad resonance at room temperature or above and appears to be unique for isocyanide ligands.

We thank the NSERC (Canada) for financial support, and Drs Lj. Manojlovic-Muir and K. W. Muir for most helpful advice.

Received, 30th April 1990; Com. 0/01914C

References

- D. M. P. Mingos and R. W. M. Wardle, *Transition Met. Chem.* (*Weinheim Ger.*), 1985, **10**, 441; N. K. Eremko, E. G. Mednikov and S. S. Kurasov, *Russ. Chem. Rev.*, 1985, **54**, 394.
- 2 D. M. P. Mingos, I. D. Williams and M. J. Watson, J. Chem. Soc., Dalton Trans., 1988, 1509.
- 3 G. Ferguson, B. R. Lloyd and R. J. Puddephatt, *Organometallics*, 1986, **5**, 344.
- 4 S. S. M. Ling, N. Hadj-Bagheri, Lj. Manojlović-Muir, K. W. Muir and R. J. Puddephatt, *Inorg. Chem.*, 1987, 26, 231.
- 5 D. G. Evans and D. M. P. Mingos, J. Organomet. Chem., 1982, 240, 34; C. Mealli, J. Am. Chem. Soc., 1988, 352, 397.
- 6 C. E. Briant, D. I. Gilmour and D. M. P. Mingos, J. Organomet. Chem., 1986, 308, 381.
- 7 Y. Yamamoto, K. Takahashi and H. Yamazaki, J. Am. Chem. Soc., 1986, 108, 2458.
- 8 R. Bender, P. Braunstein, A. Tiripicchio and M. T. Camellini, Angew. Chem., Int. Ed. Engl., 1985, 24, 861.
- 9 A. Dedieu and R. Hoffmann, J. Am. Chem. Soc., 1978, 100, 2074.